Search results

Search for "scanning thermal microscopy (SThM)" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • material [19][20][21]; ii) by mapping of the different surface contact potential values by Kelvin probe force microscopy (KPFM) in the semicontact mode [19][22][23][24][25], or iii) by measuring the differences in thermal conductivity by scanning thermal microscopy (SThM) [19][20][26]. Shape, size
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • . Keywords: contact resistance; Kelvin probe force microscopy (KFM); nanowire; scanning thermal microscopy (SThM); self-heating; Introduction Electronic and thermal properties of nanoscale devices are innately coupled. The charge carriers in most conductors release energy by scattering at defects or phonons
  • interpretation. Here, we demonstrate high-resolution measurements of an operating indium arsenide (InAs) nanowire (NW) by scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KFM), and how the information obtained by both methods can be combined to extract quantitative thermal and electronic
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018
Other Beilstein-Institut Open Science Activities